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Health policy issues often dominate state
and federal policymakersÕ agendas.  In the
most recent session of the United States
Congress alone, the House and Senate
addressed legislation concerning a patientsÕ
bill of rights, prescription drugs for seniors,
and generic drug substitution. While
politics and legislative realities seem to have
starring roles in the process, in most cases,
research results and other information can
be solid supporting players.  Those
responsible for the recommendations, if not
also the decisions, strive to increase their
knowledge of the problem at hand, as well
as the likely impact of the regulation or
legislation under consideration.  However,
they frequently express frustration that they
do not have objective evidence-based and
timely information on which to base their
recommendations and decisions.

Health services researchers, meanwhile,
generate information about many of the
same pressing health policy issues.  Each
year millions of dollars are spent by private
foundations and the federal government to
support health services research designed to
produce useful, policy relevant results.  A
plethora of monthly journals are filled with
articles highlighting findings from studies of
health care costs, quality, and access, as well
as interventions designed to improve health
and health care.  Many universities and
research institutions publish reports with
findings of interest to decision-makers. 

The challenge for the field, in general, and
shared by us at The Robert Wood Johnson
FoundationÕs Changes in Health Care
Financing and Organization (HCFO)
initiative, is to develop effective
mechanisms for researchers to make their
findings accessible to policymakers seeking
information. Typically, with this goal in
mind, we present summary research
findings in short documents focused on
specific issues.  Often these summaries
clearly delineate the findings, but in an
effort to increase their clarity 
and importance, there is very little
explanation of the methods used to develop
the findings or caveats that might be
applicable in a real-world setting.  

This special report, emanating from a HCFO
meeting, ÒManaged Care Spillover:  Research
and Policy Issues,Ó conducted by The
Academy for Health Services Research and
Health Policy (now AcademyHealth) on
November 8, 2001, takes another approach to
making research information accessible.  We
asked Bryan Dowd to assist the audience of
senior-level decision-makers in understanding
how the findings from studies of the effects 
of managed care spillover might be used to
inform policy discussions.  He discussed 
the challenges to evaluating complex
interventions or phenomena using standard
econometric techniques.  He explained how
equations are used to depict the relationships
among the key variables being studied, and
he identified common sources of bias or error
that might affect the results of such analyses.
He also pointed out that while research and
policy development often require using
imperfect information, it is important for
those using research findings to ask
questions that allow them to identify and
account for such imperfections.  Participants
at the meeting found DowdÕs insights and
brief review of econometrics to be helpful and
recognized that his guidance would be of
general use beyond the specific study findings
being disseminated and beyond those
participating in the meeting.  Therefore, 
the HCFO program commissioned Dowd 
to further develop his presentation for
broader distribution.  

While the report may be somewhat technical
for those with no exposure to econometric
methods, we hope that it will serve as a
useful guide to analysts and information
brokers with minimal background in
econometric analysis as they seek to fully
understand the research findings and reports
available.  Decision-makers with the time
and inclination to go beyond a list of
summarized research findings can use this
report to ask appropriate questions and
provide necessary caveats when considering
the validity and applicability of research
findings to a specific policy discussion.

Anne K. Gauthier, Program Director
Deborah L. Rogal, Deputy Director
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Good public policy decisions require
reliable information about the causal
relationships among variables.
Policymakers must understand the way
the world works and the likely effects
of manipulating the variables that are
under their control.  The purpose of
this paper is to assist policymakers by
providing an introduction to some of
the problems associated with causal
inference from empirical data. We
hope that the paper also will be helpful
to researchers who are attempting to
draw causal inferences from data, or
explain their results to policymakers.  

Policymakers face a number of
problems when presented with results
from empirical studies.  Sometimes 
the studies use inappropriate methods 
or draw unwarranted inferences 
from the results.  Sometimes the
results from good studies are subjected 
to selective interpretation before 
being passed on to policymakers. 
We hope that this paper will help
researchers produce better research,
and help policymakers ask the kinds 
of questions that will provide the
information they need in order to
make well-informed decisions.

Our discussion is narrative and
intuitive, rather than mathematical.
Researchers encountering the subject
for the first time can pursue the topics
introduced in this paper by picking up

any introductory econometrics text 
and reading the sections on omitted
variables bias and simultaneous
equations, and then reading the same
sections in more advanced texts. 

Advanced researchers may find our
treatment of the topic frustrating, 
and even misleading. Only two of
many problems associated with 
causal inference are discussed, and
they are discussed only for the case 
of cross-sectional data, with only brief
references to time-series (panel) 
data.1 Problems of measurement and 
of generalizing sample results to
inappropriate populations are omitted.
The latter problem is assumed to 
be resolved satisfactorily by the
sampling theory of frequentist
statistics. Problems of aggregation
across subgroups (including SimpsonÕs
paradox or the Òecological fallacyÓ 
and LordÕs paradox) are omitted. 

Health services researchers who 
would like more information on these
omitted topics should refer to papers
from a conference titled ÒResearch
Methodology: Strengthening Causal
Interpretations of Nonexperimental
Data,Ó sponsored by the (then) Agency
for Health Care Policy and Research, 
in 1990 (AHCPR, 1990).   

Introduction
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Does a change in the value of one variable
really produce a change in value of
another variable? This seemingly simple
question has challenged some of the
greatest thinkers in history, including
Heraclitus, Plato, Aristotle, Galileo,
Hobbes, Hume, Kant, and countless other
philosophers and scientists. Rigorous
treatment of causality in statistical
analyses peaked during the last half of the
20th century with the work of the Cowles
Commission and its intellectual offspring
(Heckman, 1999). Many of the major
advances in econometrics during the last
four decades have been in the area of
causal inference. A number of recent
books have been devoted to the subject,
including Causality: Models, Reasoning and
Inferenceby Judea Pearl (2000), and
Causality and Explanationby Wesley C.
Salmon (1998). The discoveries of
quantum mechanics have added to both
the mystery and our understanding of
causality. At the beginning of the 21st
century, the topic of causality is more
intriguing and perplexing than at any 
time in history.

There are a number of fundamental
philosophical issues regarding causality.
For example, does causality imply a real,
physical connection between causes and
effects, or does the appearance of cause and
effect exist only in our minds? Can true
causal mechanisms ever be established, or
is causality merely a probabilistic statement
about the likelihood that two events will
occur in conjunction? What is a probability,
for that matter? How should the fact that
many causal theories may be consistent
with the same data be incorporated into
empirical investigations of causality?

For the most part, this paper sets the
philosophical questions aside and focuses
on the same topic considered by the
Cowles CommissionÑcausality in the
context of empirical statistical analyses.
An important contribution of the Cowles
Commission was the identification of the

conditions under which the parameters
of a causal model can be recovered from
correlational data (Heckman, 1999). 
The textbook example of this problem is
the estimation of demand and supply
equations. In theory, market-wide
demand curves should represent the
negative relationship between output
price and demand for the commodity.
Market-wide supply curves should
represent the positive relationship
between output price and supply of the
commodity. The Cowles Commission
identified the data required to recover a
negative coefficient on price in the
demand equation and a positive
coefficient on price in the supply
functions from a single cross-sectional
dataset on prices and quantities taken
from different market areas. 

In health services research, analysts often
are concerned with causal effects. Virtually
all program evaluation and health
outcomes research attempts to establish
causal effects. Models of choice, demand
or supply relationships, and medical
decision-making all have embedded within
them the assumption that changing the
values of some of the variables will result
in changes in the values of other variables.
Researchers may soften their rhetorical
treatment of causality by saying that the
coefficient from a linear regression model
is Òthe change in the dependent variable
that is associated with a one unit change in
X.Ó All too often, however, the analyst
would not be offended in the least if the
reader assumed that Òif you change X one
unit holding the values of the other
variables constant, you will get a 10 unit
(for example) change in Y.Ó The ceteris
paribus condition (i.e., Òholding the effects
of other variables constantÓ), may be
nothing more than a fond wish, but it
often is incorporated unapologetically into
the interpretation of the results by
elevating the estimated coefficients to the
status of partial derivatives.

Background

The discoveries of quantum
mechanics have added to 
both the mystery and our
understanding of causality. 
At the beginning of the 
21st century, the topic of
causality is more intriguing 
and perplexing than at any 
time in history.
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The essential problem is estimating
the effect of changing the value of an
explanatory variable (X) on the value of
a dependent variable (Y). An example
would be the effect of moving subjects
from the treatment group to the control
group in a study of health outcomes, as
shown in Figure 1. The estimated causal
effect of X on Y is the coefficient §.  
In a linear regression model,2 § is the
change in Y produced by a one unit
change in X. For example, if X is
measured in years, § is the effect on Y
produced by an additional year of X.  

Unfortunately, the real world is more
complex than the diagram in Figure 1.
Figure 2 shows the empirical problems
encountered in the real world. X, Y, W
and Z are observed variables and u and v
are vectors of unobserved variables, or

stochastic error terms. In addition to the
causal effect of X on Y, there also may be
variables that are causally related to both
X and Y (denoted Z and W). If these
variables are observed, their effects can
be modeled and controlled. If they are
not observed, the effect of their omission
depends on the way in which they
operate.  If the omitted variables
represent pathways by which X affects Y
(i.e., an unobserved W), their effect will
be incorporated into the estimated causal
effect §. This change in § does not
necessarily represent a bias, as long as
the analyst recognizes that the estimated
effect includes the effect of W. 

If the omitted variables represent a
common cause of X and Y (i.e., an
unobserved Z) their omission will
result in spurious correlationand 
biased estimates of the causal effect §.
Epidemiologists and sociologists might
refer to Z as a confounding variable.
Econometricians refer to bias of this
type as omitted variables bias.

The second problem considered in this
paper is reverse causality. Reverse
causality means that Y might exert a
causal effect on X, in addition to (or
instead of) the effect of X on Y. Reverse
causality is denoted in Figure 2 by the
coefficient labeled Ò§ reverse.Ó 

The Problem

The essential problem is
estimating the effect of
changing the value of an
explanatory variable (X) on 
the value of a dependent
variable (Y).

Figure 1: 
The Question: What is the
Causal Effect of X on Y?

X Y
ß(?)

For example:

Membership 
in the treatment

versus control 
group

Outcome of 
Interest

ß(?)
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What is to be done about these
problems of omitted variables and
reverse causality in analyses of empirical
data? At first, the outlook seems bleak.
Peter Kennedy in his popular Guide to
Econometrics (1998) says Ò(u)sing the
dictionary meaning of causality, it is
impossible to test for causality.Ó What is
the dictionary meaning of causality?
WebsterÕs dictionary (1977) gives the
following definition: 

Causality: Òperson or thing responsible
for an action or result. To make happen;
bring about.Ó

This definition is followed by an
explanation of five concepts of
causality. A health services research
example has been added for each one.

1. Cause:A cause helps bring the
event about. Example: Increasing
the copayment for outpatient office
visits will cause a decrease in the
demand for visits.

2. Determinant: A determinant fixes 
the nature of the result. Example:
Education is a determinant of
health status.

3. Antecedent:An antecedent precedes
the result. Example: A rapid
increase in health insurance
premiums in the early 1990s was
an antecedent of the Clinton
administrationÕs health care reform
proposal. 

4. Reason: A reason is a traceable or
explainable process relating the
cause and result. Example: The fear
that they will face high out-of-pocket
expenses for uncovered inpatient
expenditures is the reason why
Medicare beneficiaries buy private
supplementary insurance policies. 

5. Occasion: An occasion triggers a
result and may be different from 
an underlying cause. Example, 
the spend-down requirement of
Medicaid is a cause of asset shifting
from one spouse to another among
elderly couples, but a specific
adverse health event can be the
occasion that triggers the asset shift
for a particular couple. 

Empirical analysis in econometrics
usually focuses on the first and second
concepts of causality, treating the third
concept, antecedence, as a necessary,
but not sufficient, condition for
causality. Antecedence has found its way
into the econometrics literature as
Granger causality, which Maddala
(1988) equates to Òprecedence.Ó
Granger causality means that past
values of X are helpful in predicting the
current values of Y, but future values of
X are not. Kennedy (1998) notes that
econometricians should use the term
Granger causality rather than causality,
but generally do not. Health services
research usually does not focus on
Òoccasions,Ó although there certainly are
interesting research questions in care-
seeking behavior or health plan
disenrollment, for example, that focus
on the ÒoccasionsÓ that trigger action on
the part of the individuals. 

Figure 2:
The Real World

X Y

W

ß

ß reverse

Z

v u

Empirical analysis in
econometrics usually focuses 
on the first and second 
concepts of causality, treating 
the third concept, antecedence,
as a necessary, but not sufficient,
condition for causality.
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The concept of ÒreasonÓ is one that
probably could use more attention in
health services research. For example,
Christianson, et al. (2001) note that 
many studies examine health outcomes
for chronically ill Medicare beneficiaries
in HMOs versus FFS Medicare, 
but only a small number explore the
mechanisms that plausibly could produce
the observed differences. In his textbook
Causal Analysis, David Heise (1975) is
adamant about the concept of reason,
stating that Ò(o)ne event does not directly
cause another if no effective operator is
available to support the relationship.Ó  

A number of formidable barriers
stand between the data analyst and
the establishment of causality. The
first, mentioned earlier, is the ceteris
paribus condition that the effects 
of all other variables must be held
constant. In health services research, 
and particularly in non-experimental
settings,3 it often is physically
(technically) impossible to hold 
the effects of all other variables
constant, and implausible to argue
that they effectively are held constant.
The fallback position is to employ
theory and statistical modeling to
approximate the ideal world of a
perfectly controlled experiment.

A second threat to causal inference 
is the fact that any empirically
determined relationship among
variables is likely to be consistent with
a number of different theories. The
approach to that problem is to develop
a theory, stated in the form of a null
hypothesis, and then test whether a
dataset (different from the data used to
develop the theory) can reject the null
hypothesis at some predetermined

level of statistical confidence. The
result of the test is all one can report at
that point. Other hypotheses remain
viable until they are rejected, perhaps
by developing theory and empirical
tests that can distinguish among
competing hypotheses.

This paper examines the difficulties
associated with testing a particular null
hypothesisÑno causal effect of X on
YÑin cross-sectional data. It also
illustrates the use of theory and
statistical modeling to address two
specific threats to causal inference:
omitted variables and reverse causality. 

Omitted variables bias
Suppose we are trying to estimate the
causal effect of membership in a
particular type of health plan on
subsequent health expenditures or
utilization of services.  This question
arises often in comparisons of
managed care and fee-for-service
health plans in the Medicare program.
The problem is shown in Figure 3.  

Figure 3:
Spurious Correlation

ßHPType of health
plan (X)

Health
Expenditures (Y)

Chronic illness (u)

Chronic illness is unobserved, 
and is an example of omitted 

variable bias or “spurious correlation.”

This paper illustrates the use of
theory and statistical modeling
to address two specific threats
to causal inference: omitted
variables and reverse causality. 
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In Figure 3, chronic illness is a variable
that is unobservable by the analyst, 
and thus is an omitted variable in the
analysis.  Chronic illness is a common
cause of both the type of health plan the
subject joins (X) and subsequent health
expenditures (Y). Because chronic illness
is unobserved and cannot be included in
the regression equations for Òtype of
health planÓ or Òhealth expenditures,Ó 
it is contained in the unobserved error or
disturbance term, denoted Òu.Ó Under
the assumption of a linear relationship
between health expenditures and 
types of health plan, we could write 
the regression equations for health
expenditures as:

(Equation 1)
Health Expenditures = §HP Type of Health Plan + u

where u represents chronic illness.4

If there are omitted variables like
chronic illness in our analysis, then 
the estimated causal relationship,
represented by §HP, will misstate 
the true causal relationship.  For
example, we might conclude that
expenditures were lower in managed
care Medicare+Choice (M+C) plans
than in FFS Medicare, but the lower
expenditures might be due, in part, 
to a lower prevalence of chronic
illness in the M+C population.  

Econometricians say that the estimate of
§HP is biased, because the estimated
relationship is due, in part, to the effect
of chronic illness on both the type of
health plan the subjects join and their
subsequent health expenditures.  The
error term ÒuÓ is correlated with the
explanatory variable ÒType of Health
PlanÓ in the regression equation.
Statisticians refer to this type of bias as
Òspurious correlation.Ó Epidemiologists
would say that chronic illness is an

unobserved confounder. In simple models
such as the one shown in Figure 3 it is
possible to determine the direction of 
the bias. If the effects of chronic illness
on type of health plan and health
expenditures have the same sign (e.g., a
proportional (positive) or inverse
(negative) effect), then the estimate of §HP

is too positive.  If the effects of chronic
illness on type of health plan and health
expenditures have opposite signs, the
estimate of §HP is too negative.  In more
complex models, it often is difficult to
determine the direction of the bias,
because the direction depends on the
correlations among all the variables, both
observed and unobserved, in the model. 

Figure 4 shows another version of
omitted variables bias. Here, the problem
is not a commonomitted variable, but
correlation among the omitted variables
that cause the consumer to join one 
type of health plan versus another and 
the omitted variables that cause health
expenditures. The result, however, is 
the same as in Figure 3Ña biased
estimate of the causal effect of X on Y,
represented by §HP. 

In more complex models, it
often is difficult to determine
the direction of the bias,
because the direction depends
on the correlations among all
the variables, both observed
and unobserved, in the model.

Figure 4:
Spurious Correlation

ßHPType of health
plan (X)

Health
Expenditures (Y)

Chronic 
illness 

(u)

Consumer desire
for broad choice 

of providers
(v)

ßR ßS

R S
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Econometricians refer to the problem
illustrated in Figures 3 and 4 as
Òcorrelated errors across equations.Ó
What they mean is the unobserved
error term in the equation describing
how Òtype of health planÓ takes on its
value (i.e., Òconsumer desire for broad
choice of providersÓ) is correlated with
the error term in the equation
describing how Òhealth expendituresÓ
takes on its value (i.e., Òchronic
illnessÓ). 

Figure 5 shows how the biased
estimate of § arises. The unobserved
determinants of X (type of health plan),
denoted v, cause changes in X.
However, X also appears in the Y
(health expenditure) equation. That
alone would not be problematic, but
the correlation of u and v means that X
and u are correlated in the Y equation,
which leads to biased estimates of §,
just as in Equation 1.5

While the problem of omitted variables
can be acute, it often causes more
consternation than necessary. It is
important to understand the limited
nature of the cases in which omitted
variables result in biased estimates of
the causal effect of X on Y from
ordinary least squares (OLS) regression.6

All stochastic regression equations
have omitted or unobserved variables,
which is why they have a stochastic
error term. All unobserved variables
reduce the explained variation in the
dependent variable, which, in turn,
reduces the statistical power of the
analysis.  But not all omitted variables
result in biased estimates of causal
effects.  Only variables that causally
affect both the dependent variable (Y)
and an explanatory variable (X) result
in biased estimates of §HP.  

Figure 6 shows a case in which the
omitted variable is correlated with 
both type of health plan and health
expenditures, but estimates of the causal
effect (§HP) are not necessarily biased.
The model in Figure 6 appears, at first,
to be similar to the models in Figures 3
and 4 because the variable Òphysician
practice styleÓ is unobserved and is
correlated with both X (type of health
plan) and Y (health expenditures).
However, physician practice style is not a
source of spurious correlation, because
in the version of the theory shown in 
the diagram, it does not cause the
consumer to join one health plan versus
another. Rather, it is a product of the
hiring practices of the health plan. It is
one of the ways in which health plan
membership affects health expenditures.
If the physiciansÕ practice style is not
observed, the effect of physician practice
style will be incorporated into the
estimated coefficient §HP. §HP is 
not biased, as long as the analyst
understands that it represents the 

Figure 5:
How the Correlation of 
X and u Arises

While the problem of omitted
variables can be acute, it often
causes more consternation
than necessary.

Y = §SS + §X + u

X = §R R + v
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ÒfullÓ effect of type of health plan 
on expenditures, rather than the ÒpartialÓ
or ÒresidualÓ effect, controlling for
physician practice style. 

In some analyses, the objective is to
understand all the ways in which X
might affect Y. Data might be collected
on variables such as physician practice
style and added to the model with 
the hope that the estimated coefficient
§HP (i.e., the residual effect controlling
for all observed pathway variables) will
become zero. 

Another way to distinguish the
examples in Figures 3 and 4 from the
example in Figure 6 is to note that
Òtype of health planÓ in Figures 3 and 4
is an endogenous stochastic variable.
That means that Òtype of health planÓ 
is itself a dependent variable in an
equation that contains the stochastic
error term v.  However, in Figure 6,
Òtype of health planÓ is predetermined
relative to the value of health
expenditures that it helps to produce.
It is not caused by anything in the
model.  Rather than being an
endogenous stochastic variable, Òtype 
of health planÓ in Figure 6 is said to 
be fixed in repeated samples. 

The issues raised in Figures 3, 4, 
and 6 illustrate a problem that has
received considerable attention in the
econometrics literature.  Policymakers
and researchers often are interested in
establishing the causal consequences
of past policy initiatives.  Typically, the
causal inference must be based on 
data from past initiatives. The problem
is that past causal relationships, 
even if established with considerable
certainty, need not imply future 
causal relationships. In the economics
literature, this issue is referred to 
as the Lucas Critique after Robert
LucasÕs work on the relationship
between expectations, monetary policy,
inflation, and unemployment. 

A simple example illustrates the problem.
Suppose that at some point in the 
past, Medicaid eligibility was expanded 
in some sites, and a subsequent
improvement in the health status of the
newly eligible population was observed.
Suppose further that a carefully designed
research project determined with
reasonable certainty that there was, in
fact, a causal link between the expansion
of eligibility and the improvement in
health status.  Finally, suppose that
Medicaid expansion has an impact on
health status through the following
causal pathway: 
a) individuals who previously were

uninsured sign-up for the newly
expanded Medicaid insurance;

b) the increase in insurance coverage
leads to demand for more health
care services; 

c) providers are willing to supply
services to the newly entitled
beneficiaries; and finally 

d) the additional health care
consumption leads to an
improvement in health. 

Figure 6:
Unobserved Pathways

ßType of health
plan (X)

Health
Expenditures (Y)

Physician practice style

Policymakers and researchers
often are interested in
establishing the causal
consequences of past policy
initiatives.
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Will further expansions in the same
sites result in an even greater
improvement in health status?  Will
expansion of eligibility in new sites
produce the same results as in the
original sites?  Unfortunately, the
original study does not provide clear
answers to these questions. 

The first potential problem is a 
product of the original research design.
When research funds are limited,
government agencies, foundations, and
researchers may legitimately choose to
test a new intervention in sites where it
has the greatest chance of success.
The theory is that if the intervention
fails there, it would fail everywhere.
However, an intervention that succeeds
in the most favorable site could fail
everywhere else.  Thus, former success
is not a good indicator of future
success.  This is a case of omitted
variables bias, corresponding to
Figures 3 and 4.  The omitted variables
are characteristics of the site that
influenced which sites received the
intervention (X), and the likelihood of
the interventionÕs success in those sites
(Y).  This is what econometricians call
sample selection bias.  

The second potential problem is that
the causal effect, though real in the
original sites, may have been
exhausted at the level of Medicaid
expansion that was implemented in
the sites, and further expansion may
have no further effect on health
status.   Incorrect inference could
arise from failure to realize that the
relationship between Medicaid
expansion and health status was non-
linear. This failure could be depicted
as a missing pathway, as in Figure 6.
Suppose that the level of expansion is
inversely related to the severity of
illness of individuals in the program,

and the severity of illness, in turn, 
is positively related to improvement
in health (e.g., greater severity
implies greater improvement).  
The misinterpretation of the results
from the original data is a failure 
to recognize that the estimated §
relating Medicaid expansion to health
status in the original study was the
full effect, rather than the partial
effect, controlling for the severity 
of illness among newly eligible
enrollees.  

There is no easy solution to these
problems. In particular, there is no
easy solution that relies solely on
econometric techniques as opposed 
to a more thorough substantive
understanding of the phenomena
that produced the observed data, and
there is no consensus in the economics
profession on the best approach. 
Some economists advocate that policy
analysis should be based only on the
estimation of ÒdeepÓ or ÒstructuralÓ
parameters. That is, the econometric
model should include and estimate the
causal pathways by which a policy has
its effects on outcomes of interest.
Unfortunately, while this approach has
theoretical appeal, these Òstructural
modelsÓ often require many untenable
assumptions. Other economists advocate
a reduced form approach, in which the
effects of the policy are summarized in 
a single parameter estimate, and the
researcherÕs focus is on controlling for
potential confounders.  

Reverse causality
To continue an example from the previous
section, suppose we are interested in
estimating the effect of health insurance 
on the health status of a population.  
As shown in Figure 7, health insurance
indeed might affect health status by
providing increased access to health care

Some economists advocate
that policy analysis should be
based only on the estimation
of “deep” or “structural”
parameters. That is, the
econometric model should
include and estimate the
causal pathways by which a
policy has its effects on
outcomes of interest.
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services, but consumers in poor health
status might find it difficult to purchase
health insurance in the individual
commercial health insurance market.
(They almost certainly will find it
expensive.) In addition, poor health also
might affect the consumerÕs access to
employment, and thus to employment-
based health insurance.  So health
insurance might affect health status and
health status might affect health insurance,
as well.  This is an example of reverse
causality.  Reverse causality can be present
in additionto the causal effect that we are
trying to detect, or it can be present instead
of the effect we are trying to detect. 

In one sense, the problem is similar 
to omitted variables bias in that 
health insurance (X) is a stochastic
explanatory variable, requiring its own
equation, and determined, in part, by
the stochastic error term v. However,
the problem with reverse causality is
different from omitted variables in that
u and v do not need to be correlated in
order for bias to arise. 

Remembering that bias arises due 
to a correlation of X and u in the Y
equation, Figure 8 shows how 
that correlation arises in the case of
reverse causality. There is some

unobserved variable u (e.g., prior
onset of chronic illness) that affects
health status (Y). Health status,
however, is a causal determinant of
the consumerÕs ability to obtain health
insurance (X) as shown in the second
equation. This causal effect is distinct
from the causal effect of health
insurance on health status. But health
insurance appears in the health status
equation, and thus health insurance
and u are correlated (as shown by the
dotted arrow). The error terms u and
v might or might not be correlated,
but their correlation is not necessary
to produce biased estimates of §HI .  In
a simple linear regression equation, the
estimated causal effect of health
insurance on health status is due, in
part, to the causal effect of health
status on health insurance.  

Although the problems of omitted
variables bias and reverse causality are
substantively different, they result in the
same source of biasÑcorrelation of the
explanatory variable or variables in a
regression equation with the error term in
the equation. The next section discusses
approaches to correcting the problem. 

Figure 8: 
How Correlation of X and U
Arises in the Case of Reverse
Causality

Reverse causality can be
present in addition to the
causal effect that we are trying
to detect, or it can be present
instead of the effect we are
trying to detect.

Health Status = ßSS + ßHI Health Insurance + u

Health Insurance = ßRR + ßHS Health Status + v

Health
Insurance (X)

Health
Status (Y)

uv

ßR ßS

R S

ßHI

ßHS

Figure 7:
Reverse Causality
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The problems of omitted variables and
reverse causality appear formidable, and
in many cases they are difficult 
or impossible to resolve.  However,
analytic approaches have been developed,
and it is helpful for policymakers to have
an intuitive understanding of those
approaches. Some of the approaches are
essentially different, while others simply
are variations on a theme. In some cases,
the same approach is applicable to both
omitted variables and reverse causality,
while other approaches apply only to one
problem or the other. 

Omitted variables
As discussed in the previous section, the
special problem of omitted variables bias
arises not from unobserved variables per
se, but unobserved variables that cause
both X and Y, as shown in Figure 3, or
the correlation of unobserved variables
that cause both X and Y, as shown in
Figures 4 and 5. Remember that the
essential problem is the correlation of X
with the error term u in the Y equation. 

There are three approaches to the
problem:

1. Collect additional data on the
unobserved variables and add them
to the analysis.

2. Attempt to manipulate X in a way
that has no effect on Y other than
through the induced changes in the
values of X.

3. Model the correlation of the error
terms in the X and Y equation as
part of the estimation approach.

Collecting additional data
Although the value of collecting
additional data never should be
underestimated, there can be
important costs in both time and
money associated with additional data
collection, and it may not ever be
possible for the analyst to feel
confident that all the unobserved
variables that could contribute to
omitted variables bias have been
collected.  For that reason, the
possibility of collecting additional data
is acknowledged, but the remainder of
the discussion focuses on the second
and third approaches to the problem.

Manipulating X
The purpose of manipulating X is to
change the values of X in a way that does
not affect Y exceptthrough the changes
induced in XÑin other words, in a way
that has no direct effect on Y, only an
indirect effect through the induced
changes in X. If a mechanism can be
found that accomplishes that purpose,
then the changes in Y associated with the
changes in X could be interpreted as the
causal effect of X on Y.

The most desirable mechanism for
manipulating X independent of Y is
random assignment of subjects to
different values of X. A familiar
example is assignment of subjects to a
treatment (or ÒexperimentalÓ) group
versus a control group. In that
application, group membership is the
variable X. When subjects are assigned
randomly to the two groups (i.e., the
two values of X) there is, in theory, no
possibility that the assignment of
group membership could be associated
with any other variable that might
affect the dependent variable (Y)
independently of the effect through X.

How researchers approach these problems

Although the value of collecting
additional data never should 
be underestimated, there can
be important costs in both
time and money associated
with additional data collection.
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Of course, the theory can break down if
subjects refuse to participate in the
study or drop out during the course of
the study for reasons that are related to
the outcome variable.

In the absence of randomization, the
analyst can look for another Òmanipulator.Ó
That manipulator might be one that 
the analyst controls, or one that occurs
ÒnaturallyÓ in the data.7 The general
approach to Òmanipulation of XÓ is
shown in Figure 9.

As an example, suppose that an analyst
is trying to study the relationship
between out-of-pocket premiums (X)
and employee choice of health plan (Y)
in firms that offer more than one 
plan. It is likely that in many settings, 
the overall premium for a health 
plan is affected by unobserved plan
characteristics (e.g., quality-enhancing
features) that also might affect the
health planÕs appeal to employees. In
that case, the estimated relationship
between premiums and health plan
choice would be biased, due to the

effect of these unobserved plan
characteristics that affect both
premiums and choice. 

Now suppose the model is altered so
that employee choice of health plan is
determined not by the total premium,
but by the employeeÕs out-of-pocket
premium, which equals the total
premium minus any premium
contribution the employer makes on
ÒbehalfÓ of employees.8 Suppose that
the analyst is able to persuade the
employer to change the employerÕs
premium contribution 9 so that the
employeesÕ out-of-pocket premium
changes and suppose further, that it is
plausible to assume that the change in
the employerÕs premium contribution
has no effect on health plan choice other
than the effect through the employeesÕ
out-of-pocket premiums. This model 
is shown in Figure 10. The employerÕs
premium contribution is the
manipulator or instrument, denoted I.

Figure 9:
Manipulating X

X Yß

The goal is to identify a variable I that is

correlated with X, but has no effect on Y other
than through the changes it induces in X. Figure 10:

Manipulating X: An Example

Employer
Premium
Contribution

The employer’s premium contribution
affects the employee’s out-of-pocket

premium but has no other effect 
on the employee’s choice of plan.

In the absence of randomization,
the analyst can look for another 
“manipulator.” That manipulator
might be one that the analyst
controls, or one that occurs
“naturally” in the data.

I

v u

Health
Plan
Choice

(Y)

v u

(I)

Employee
Out-of-Pocket
Premium

ß

(X)
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Assuming that changing the
employerÕs premium contribution
affects health plan choice only through
changes in the employeesÕ out-of-
pocket premiums, the analyst could
compare the change in out-of-pocket
premiums to the change in health plan
enrollment and estimate the causal
relationship between out-of-pocket
premiums and health plan choice. 

Ideally, the employerÕs premium
contribution would be changed for a
randomly chosen subset of sites or
employees.  Comparison of the
treatment and control groups would
allow the analyst to separate the effect
of any ongoing time trend in health
plan choice from the effect of the
change in out-of-pocket premiums.  

In the real world, variables that
manipulate X with no direct effect on Y
can be extremely difficult to identify.
Saying that I affects X, but has no
direct effect on Y is equivalent to
saying that I affects X, but is not
correlated with u. Because the
requirements for I involve correlations
with unobserved variables, it is
understandable that the requirements
are difficult to test.

This difficulty was illustrated by
McClellan, McNeil, and Newhouse
(1994) in a study that focused on the
medical effectiveness of different
treatments for acute myocardial
infarction (AMI). McClellan, et al.,
realized that patients were not assigned
randomly to different treatments, so
there might be unobserved variables
associated with the treatment received
by the patient that also affected the
outcome of treatment. The severity of
the patientÕs medical condition was the
variable most likely to be a source of
omitted variables bias.

The authors were not in a position to
manipulate directly any of the factors that
affected assignment to treatment
modalities, but they identified a variable
that they argued produced different
values of the treatment variable, but had
no other effect on treatment outcome.
The variable (I) was the difference in
distances from the patientÕs home to
facilities offering different types of
treatments.  The omitted variables of
greatest concern to the authors were
unobserved dimensions of severity of
illness. Unobserved illness severity
would be incorporated into the error
term u in the Y equation. The authors
demonstrated that distance was
uncorrelated with observed measures of
illness severity, and thus they concluded
that it probably was uncorrelated with
unobserved illness severity. The
argument, then, was that Òdistance to
facilityÓ was correlated with type of
treatment (X), but not with u. In essence,
the authors were arguing that Òdistance
to facilityÓ assigned subjects randomly to
different treatmentsÑrandom in the
sense that the assignment process had no
direct effect on treatment outcomes.
McClellan, et al.Õs model is shown in
Figure 11.

Figure 11:
McClellan, et al.’s Model

Distances
to Facilities
Offering
Different
Treatments

Treatment 1
vs Treatment 2

Unobserved Severity of Illness

In the real world, variables that
manipulate X with no direct
effect on Y can be extremely
difficult to identify.

Treatment
Outcomes
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Having assigned subjects to values of 
X through a pseudo-random process,
some method must be chosen to
evaluate the effect of the treatment.
There are two general approaches. 
The first is to compare the change in 
X to the change in Y for subjects with
different values of the variable I. By
comparing the differences in frequency
of treatment types and differences in
outcomes between patients who lived
close to a facility offering a specific
treatment and patients living far away
from such facilities, the authors were
able to calculate the causal effect of 
the treatment on outcomes. This
approach is referred to as Òdifference
in differences.Ó 

When assignment to different values
of X is not based on randomization,
but on variation in a variable I, not all
of the subjects may be at the same
ÒriskÓ for being assigned to different
values of X. This is an important
feature of this estimation approach.
When one relies on pseudo-
randomization to assign subjects to
different X values, the resulting
estimates of the effect of X on Y apply
to the ÒmarginalÓ patients (e.g., those
at risk of being assigned different
values of X). Harris and Remler
(1998) discuss this issue in the
context of health services research
applications.  

The second general estimation
approach is a multivariate model that
uses I variables and any additional
predetermined variables in the model
to predict X. Suppose we represent the
equation for X as:

X = R� + I� + v

R is a vector of all the other
predetermined variables in the model.
� and � are coefficients and v is
random error.  Econometricians refer
to this equation for X as a Òreduced
formÓ equation. In this context, the
predicted values of X are:

Predicted X = R� * + I � *

where the asterisk represents the
estimated values of the coefficients. 

The predicted value of X does not
contain the error term v, because v has
an expectation of zero for all values of
X. Because the predicted value of X 
is correlated with the observed value 
of X, but has been purged of the
troublesome source of correlation
between v and u, it can be incorporated
into an instrumental variable estimator
that will yield consistent estimates of
desired causal parameter, §. This
approach is known as two-stage least
squares (2SLS).10

The data requirement of the
instrumental variable estimator is
identical to the requirement for the
change model or the difference-in-
differences approach to estimation
(i.e., a variable (I) that produces
variation in X with no effect on Y,
other than through the changes that 
I induces in X). 

When assignment to different
values of X is not based on
randomization, but on
variation in a variable I, not all
of the subjects may be at the
same “risk” for being assigned
to different values of X.
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Modeling the correlation of u and v
The instrumental variable estimator
based on the manipulation of X
eliminates the correlation of u and v,
and thus the correlation of X and u, 
by getting rid of v through differencing
or through the use of predicted values
of X in the instrumental variables
estimator. Another class of estimation
approaches deals with the problem of
correlation of u and v by incorporating
the correlation into the estimates of 
the causal parameter � . When X is a
discrete variable (e.g., membership in a
treatment versus control group), these
models are known in the econometrics
literature as sample selection models.11  

The possibility that unobserved
variables affect both the choice of
treatment versus control group, 
and also the subsequent outcome 
of interest, raises the possibility that 
v is correlated with u. 

The essential problem in estimating
the Y equation is that the expectation
of the error term (u) is not equal to
zero for the subjects with different
values of X. For example, suppose the
analyst is trying to determine the effect
of membership in an HMO versus 
fee-for-service (FFS) health plan on
utilization of services, but subjects 
self-selected into the two types of plans.
The subjectÕs utilization data are
observed only in the plan chosen by
the subject. Suppose further that
chronically ill individuals are more
likely to join the FFS plan than 
the HMO, but chronic illness is
unobserved to the analyst. In that case
the expected value of utilization for 

HMO enrollees must be written as:

E (UTILIZATION FFS ) = X � FFS + E (u | Choice of FFS)

where E (UTILIZATION FFS ) means
Òthe expected value of utilization for a
subject enrolled in a FFS health plan.Ó
E (u | Choice of FFS) means Òthe expected
value of the error term, given that the
subject selected the FFS plan,Ó or in
this example, 

E (u | Greater likelihood of chronic illness).

There are two common approaches to
estimating the sample selection model.
The first is a two-step approach. 
The first step is estimation of the X
equation, that is, the equation that
explains how subjects self-select into the
groups (e.g., the treatment and control
groups). From that first equation, a 
term is calculated that represents the
expected value of the error term (u)
given the sample selection rule. That
term is added to the outcome equation
of interest to correct for the fact that the
error term, conditional on the self-
selected sample, does not have a mean
of zero. This approach is referred to 
as Òlimited information maximum
likelihoodÓ or LIML.

The second estimation approach is
simultaneous estimation of both the
sample selection model and the
outcome equation of interest using 
a maximum likelihood estimator. 
This approach is referred to as Òfull
information maximum likelihoodÓ 
or FIML, and can be applied where 
X is either discrete or continuous.12

The FIML approach requires an
assumption about the joint distribution
of u and v and has been criticized for
that reason. Manning, et al. (1987)
showed that the performance of the
sample selection models depends
crucially on the identification of at least 

The possibility that unobserved
variables affect both the choice of
treatment versus control group,
and also the subsequent outcome
of interest, raises the possibility
that v is correlated with u. 
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one variable that affects sample
selection, but otherwise is unassociated
with the outcome variable in the
equation of interest. That, of course, is
exactly the same data requirement as
for the difference in differences, or
instrumental variables approach. 

Reverse causality 
Even though the source of the bias
caused by reverse causality is different
from that of omitted variables, Figure 8
shows that the result is the same: the
explanatory variable X is correlated
with the error term (u) in the Y
equation. Thus, it is not surprising that
the approaches to the two problems
share some common ground.
However, not all the approaches to
omitted variables bias are helpful in
addressing the problem of reverse
causality. Collection of additional data
will not solve the problem of reverse
causality, for example, even if the
additional data are defined over more
finely differentiated units of time that
allow the analyst to convert the model
from the problem shown in Figure 8 to
the type shown in Figure 12. 

In Figure 12, data on health insurance
(X) and health status (Y) are taken
from successive time periods so that
the question of causality for each
variable in each time period is settled
by the antecedence of the other
variable. The structure of the model in
Figure 12 implies that it is impossible
for health status during time period t
(e.g., a contract year for health
insurance) to affect health insurance
status during the current time period t.
Health status at time t affects health 

insurance, but only in the next time
period t+1 (e.g., the following contract
year).  Similarly, the diagram implies that
health insurance at time t can affect
health status during time t, perhaps
through improved access to care.  But if
all this information truly is known to the
analyst, the §HS coefficient could have
been declared to be 0 in Figure 7,
assuming that health insurance and
health status were measured in the same
time period in that Figure.

The third omitted variables approach,
modeling the correlation of error terms
across equations, also is not an option
for correcting for reverse causality bias.
The bias from reverse causality arises
whether or not errors are correlated
across equations (as shown in Figure 8). 

Health Insurance

The third omitted variables
approach, modeling the
correlation of error terms
across equations, also is not
an option for correcting for
reverse causality bias. The bias
from reverse causality arises
whether or not errors are
correlated across equations. 

Figure 12:
The Effect of Additional 
Time Periods on the 
Problem of Reverse Causality

Health Status
t

Health Insurance
t+1

Health Insurance

t

t+2

Health Status

Health Status

t+1

t+2
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Conclusions continued

Econometricians are perhaps the 
most optimistic of causal modelers, and
even among econometricians, there are
those who have grave misgivings about
the whole causal modeling enterprise.
This paper has provided an introduction
to only two of many specific threats 
to causal modelingÑomitted 
variables bias and reverse causality. 
The conclusion probably should 
re-emphasize the difficulties associated
with analytic approaches to those problems. 

First, it often is impossible, as well as
unethical, to assign subjects randomly
to different values of the X variable.
Thus, the most effective method of
manipulating the values of X often is
removed from our choice set. Even
when randomization is possible,
however, subjects often refuse to
participate or drop out of the study
before the observation period is
complete, or the control group
becomes contaminated in some way.

In the absence of randomization, the
identification of mechanisms to
manipulate X that meet the
prerequisite conditions (correlation
with X, but not with u) can be

extremely challenging, and often
impossible. Even when a reliable
mechanism (I) is identified, the choice
of estimation methods can be
controversial, as well. For the past
several years, a well-known health
economics research journal has
refused to publish any article using
sample selection models, despite the
fact that the 2000 Nobel Prize in
economics was shared by one of the
principal developers of the method.
Perhaps the best advice that can be
given at this point to those new to the
field is to:

a. Read as extensively as possible the
literature on causal modeling and
causal inference.

b. Try to read from more than one
discipline. 

c. Try to understand both the
historical perspective of different
disciplines, as well as new
developments.

d. Be prepared to encounter a variety
of attitudes toward causal modeling. 

e. Be as clear as possible about your own
intentions, models, and results.
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1 Throughout the paper, cross-sectional
data means data that are taken from the
same time period, so that only one time
period is observed for each subject.
Econometricians refer to data on
multiple subjects over multiple time
periods as panel data.

2 In this case, ÒlinearÓ means linear in
both the variables and the parameters
(i.e., � ).  

3 Throughout the paper, Ònon-experimentalÓ
is synonymous with Ònon-randomized,Ó and
refers to data taken from settings in which
subjects were not assigned randomly to
different values of X.

4 Throughout the paper, we omit the
constant or ÒinterceptÓ term in the
regression equations for simplicity.

5 If errors were correlated across
equations, but Òtype of health planÓ did
not affect Òhealth expenditures,Ó there
would be no bias in the estimated
coefficients � Z or � X, but the standard
errors of the coefficients estimated from
ordinary least squares would be biased.
Econometricians call that model
Òseemingly unrelated regressionsÓ
because the only connection between the
equations for Òtype of health planÓ and
Òhealth expendituresÓ is the correlation of
the error terms.

6 Throughout the paper, Òbiased
coefficientsÓ refers to biased coefficients
estimated from ordinary least squares
regressions.

7 ÒNaturallyÓ occurring I variables that
assign subjects to values of X in a
pseudo-random way (i.e., one that has
no direct effect on the outcome of
interest) has given rise to the term
Ònatural experimentÓ in the

econometrics literature. A change in
the tax laws that affect the after-tax
price of a good or service in one time
period versus another or for one group
versus another would be an example of
a natural experiment.

8 Economic theory predicts that in the
long run, employees pay the full cost of
health insurance premiums and other
fringe benefits out of foregone wages. 

9 One reason the analyst might be
successful in persuading the employer
to change the firmÕs premium
contribution is that the analyst is the
employer.

10The instrumental variables estimator
does not simply substitute the predicted
values of X for X. In matrix notation, the
estimator is (XÕZ)-1 (XÕY), rather than
(XÕX)-1 (XÕY) where Z is the vector of
explanatory variables with the predicted
value of X substituted for the actual value
of X.  The estimated standard errors of
the coefficients also are corrected for the
presence of predicted, rather than actual,
values of X among the explanatory
variables.

11 When X is a continuous variable,
they are known as full-information
maximum likelihood or FIML models,
but FIML also is used to refer to a
specific estimation approach for a
discrete X.

12 When X is a continuous variable and
the error terms in each equation are
normally distributed, the three stage
least squares (3SLS) estimator is
equivalent to the FIML estimator
(Greene, 2000, p. 695).
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